Die astigmatische Brechung
der Sonnenstrahlen im Regenbogen.

Mit Anwendung von
Kettenbruch-Determinanten
dargestellt von
Professor Dr. Ludwig Matthiessen.

Mit neun Abbildungen.

Rostock.
Druck der Carl Boldt'schen Hof-Buchdruckerei.
1903.
Die astigmatische Brechung der Sonnenstrahlen im Regenbogen.

Mit Anwendung von Kettenbruch-Determinanten
dargestellt von
Professor Dr. Ludwig Matthiessen.

Mit neun Abbildungen.

Rostock.
Druck der Carl Boldt'schen Hof-Buchdruckerei.
1903.
Inhalt.

Historische Einleitung.

§ 1. Die Brechung von Strahlenfächern im Hauptnormalschnitte eines kugelförmigen Regentropfens und der Austritt derselben nach beliebig vielen inneren Reflexionen.

§ 2. Die Brechung von Strahlenfächern im Nebennormalschnitte und Austritt aus dem Regentropfen nach beliebig vielen inneren Reflexionen. (Astigmatismus.)

§ 3. Vom Minimum der Ablenkung der Strahlenfächer zweiter Art.

§ 4. Über secundäre Regenbogen, welche durch Spiegelung der Sonne im Meeres­spiegel entstehen.

Figurentafeln. — Litterarhistorisches.
Historische Einleitung.

erklärt nicht, dass der scheinbare Durchmesser des Regenbogens immer derselbe ist; ferner verlegt er den Ort der Sonne in die Atmosphäre und das Auge des Beobachters nicht in den reflectirten Strahlenkegel, sondern scheinbar in das Einfallslot der Reflexion. Durch blosse äussere Reflexion des Sonnenlichtes an den Regentropfen kann überhaupt kein Regenbogen entstehen und ebensowenig durch eine Brechung ohne innere Reflexion.

Für eine mustergültige Theorie der Regenbogen und ihrer Farben, wie wir dieselbe seit Newton besitzen, gegründet auf die Lehren der Emission und Absorption, der inneren Reflexion, Refraction und Dispersion des Lichtes, bieten die erwähnten Hypothesen nichts.

De Dominis, Bischof von Spalatro (1611)² und Descartes (1637)³ erklärten die beiden Regenbogen auf gleiche Art; sie berechneten par tatonnement den Verlauf der Strahlen, ohne jedoch die Farben zu erklären. Doch wendete Cartesius bereits das Snell'sche Brechungsgesetz an. Erst Isaak Newton gab 1704 im II. Buche seiner Optik (Prop. III.) eine vollständig befriedigende, bis jetzt noch immer mustergültige Theorie der Regenbogen. Er erklärte die Entstehung der Farben und wendete zuerst die Differenzialrechnung an auf die Asymptote der kautischen Kurve der austretenden Strahlen.

3) Descartes, La dioptrique, les météores et la géométrie. Leyde. 1637.
Die secundären oder überzähligen Regenbogen, welche an den Rändern der beiden gewöhnlichen Regenbogen auftreten, wurden von Young (1802) als Interferenzphänomene erklärt. Später hat Airy (1849) diese Erklärung weiter entwickelt und eine vollendete Theorie der kaustischen Kurven der Regenbogen gegeben.\(^1\) Eine gelungene Darstellung der Theorie aller gewöhnlichen Regenbogen findet sich bei Heath (1887).\(^2\)

In allen vorerwähnten Werken sind die Betrachtungen auf die Haupt- und Reflexionsebene beschränkt und wird immer nur eine Strahlenart, nämlich die der in und parallel zur Einfallsebene liegenden Strahlenfächer unendlich dünner Strahlenbündel berücksichtigt, weswegen die bisherigen Theorien noch einer wesentlichen Ergänzung bedürfen. Die Betrachtung der Strahlenfächer II. Art, welche senkrecht zur Reflexionsebene liegen, sind auch Gegenstand der vorliegenden Abhandlung.

Die Regenbogen sind ringförmige, farbige Sonnenbilder, entstanden durch Brechung und eine Reihe von inneren Reflexionen innerhalb der kugelförmigen Regentropfen bei schiefen Incidenz und betrachtet von einem festen Augenpunkte aus. Hieraus folgt, dass die Brechung in der Meridionalebene (Symmetralebene) einerseits eine astigmatische mit zwei Brennlinien, andererseits eine farbige ist, wobei die Indices von dem Spectrum des Wassers abhängig sind. Bis jetzt hat man also die Theorie der Regenbogen nur für die in der Einfallsebene (Hauptnormalschnitt) eintretenden Strahlenfächer entwickelt, wogegen die Sonnenbilder, erzeugt durch Strahlenfächer im Nebennormalschnitt (Sagittalschnitt) unberücksichtigt geblieben sind, obgleich sie dieselbe Helligkeit wie die der I. Art besitzen. Während die Sonnenbilder der ersten Art auf jeder der Seiten des Reflexionspolygons vorhanden sind, liegen der zweiten Art auf dem Centralstrahl, also auf einer und derselben Geraden. Von den Sonnenbildern der zweiten Art ist die halbe Anzahl reell, die übrigen imaginär; die der ersten Art sind sämtlich reell. Jede der Bildarten geben aber die Hälfte der Helligkeit der wirksamen Strahlen.

Die von Newton begründete Theorie beruht auf einer Minimalbestimmung der gesamten Ablenkung nach \(m\) Reflexionen:

\[
D = 2(e_2 - e_1) + m(\pi - 2e_1).
\]

Differenziert man \(D\) nach dem Einfallswinkel \(e_2\) und setzt \(\frac{dD}{de_2} = 0\), so wird

\[
1 - (m + 1)\frac{de_1}{de_2} = 0.
\]

Die Differenziierung der Brechungsformel \(\sin e_2 = n \sin e_1\) ergibt

\[
\cos e_2 = n \cos e_1 \frac{de_1}{de_2}.
\]

\(^2\) Heath, R. S. A Treatise on geometrical Optics. Cambridge. 1887. § 314-322.
woraus in Verbindung mit der vorhergehenden Gleichung folgt

\[n \cos e_1 = (m + 1) \cos e_2 \]

und nach einigen Umformungen

\[\cos e_2 = \sqrt{\frac{n^2 - 1}{m^2 + 2m}}. \]

Wir wollen nun im Folgenden zeigen, wie man durch Anwendung der Reusch'schen Gleichungen und der Kettenbruch-Determinanten auf die Bilderzeugung bei schief er Incidenz auch auf elementarem Wege zum Ziele gelangt. Diese Methode bietet den Vorteil, dass man durch sie auch die Örter der partiellen Sonnenbilder gewinnt. Es wird der Einfachheit wegen vorausgesetzt, dass nur die Strahlen des Mittelpunkts der Sonnenscheibe in Betracht gezogen werden.

Die Aufgabe lässt sich mit Hilfe dioptrischer Kettenbrüche lösen auf folgende Weise.

§ 1. Für die Brechung von Strahlenfächer im Hauptnormalabschnitte (Meridian)

ist \(1) \)

\[\frac{-r \sin e_1 \cos e_2 - 1}{\sin (e_2 - e_1) \cdot x_0} + \frac{r \cos e_1 \cdot 1}{\sin (e_2 - e_1) \cdot x_1} = 1; \]

für die aufeinander folgenden inneren Spiegelungen

\[\frac{1}{2} \frac{r \cos e_1}{\xi_{0,0}} + \frac{1}{2} \frac{r \cos e_1}{\xi_{1,0}} = 1, \]

\[\frac{1}{2} \frac{r \cos e_1}{\xi_{0,1}} + \frac{1}{2} \frac{r \cos e_1}{\xi_{1,1}} = 1, \text{ u. s. f.} \]

Da nun die in den kugelförmigen Regentropfen einfallenden Sonnenstrahlen Parallelstrahlen sind und die aus derselben austretenden wirksamen Strahlen ebenfalls Parallelstrahlen sein und mit der Asymptote der kanstischen Kurve coindiciren müssen, so ist der ganze Strahlenverlauf nach beliebig vielen inneren Reflexionen ein symmetrischer. Es liegen deshalb die aufeinander folgenden Sonnenbilder \(B_1, B_1', B_1'', \ldots \) in der einen Hälfte des Tropfens auf den Sehnen des Strahlenweges symmetrisch zu denen in der anderen Hälfte und zwar bei einer ungeraden Anzahl von Reflexionen ein Doppelbild (Symptose) in dem mittelsten Reflexionspunkte, bei einer geraden Anzahl auf einem unendlich nahen Parallel der mittelsten Sehne.

Wir brauchen demnach nur die Gleichungen für die eine Hälfte der Bildabscissen, d. h. für die eine Hälfte der Örter der Bilder aufzustellen. Dieselben sind folgende:

\[x_0 = \infty, \]
\[x = \frac{r \sin e \cos e}{\sin(e_2 - e_1)} = a, \]
\[\frac{1}{2} r \cos e = b, \]
\[x_1 + \xi_{00} = \xi_{10} + \xi_{01} = \xi_{11} + \xi_{02} = \xi_{12} + \xi_{03} = \cdots = 2r \cos e. \]

Folgeweise ist nun

\[4b - a = \xi_{00} = \frac{b}{1 - \frac{b}{\xi_{10}}}, \text{ (erste Reflexion)}, \]
\[\xi_{10} = 4b - \xi_{01}, \]
\[\xi_{01} = \frac{b}{1 - \frac{b}{\xi_{11}}}, \text{ (zweite Reflexion), u. s. f.} \]

Hieraus ergibt sich der Kettenbruch

\[\frac{a}{b} = \frac{2 \sin e \cos e}{\sin(e_2 - e_1)} = 4 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \cdots}}}, \]

oder in Determinanten-Form\(^1\)

\[
\begin{array}{cccccccc}
4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 4 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 1 & \xi_{1p} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \xi_{1p} & 0 & 0 \\
\end{array}
\]

Entwickeln wir die aufeinander folgenden Näherungswerte desjenigen Kettenbruches, welcher auf den ersten Teilzähler 1 folgt, so erhalten wir

\[\frac{1}{1 \ 1 \ 3 \ 2 \ 5 \ 3 \ 7 \ 4 \ \cdots} \]

Ist nun \(m \) die Anzahl aller Reflexionen, so werden die beiden vorletzten Näherungswerthe und der ganze Werth desselben Kettenbruches bezüglich einer Hälfte des Tropfens:

a) für eine gerade Anzahl von Reflexionen \((p = \frac{1}{2} m - 1) \),

\[
\begin{align*}
L_1 &= \frac{m - 1}{2 (m - 2)}, \quad M_1 = \frac{m}{m - 1}, \\
N_1 &= \frac{\xi_{1, \frac{1}{2} m - 1} \cdot \frac{1}{2} m - b (m - 1)}{\xi_{1, \frac{1}{2} m - 1} \cdot (m - 1) - b (2 m - 4)}.
\end{align*}
\]

b) für eine ungerade Anzahl \((p = \frac{1}{2} (m - 1)) \),

\[
\begin{align*}
L_1 &= \frac{m}{2 (m - 1)}, \quad M_1 = \frac{m + 1}{m}, \\
N_1 &= \frac{\xi_{1, \frac{1}{2} (m - 1)} \cdot \frac{1}{2} (m + 1) - b m}{\xi_{1, \frac{1}{2} (m - 1)} \cdot m - b (2 m - 2)}.
\end{align*}
\]

Die vorangehenden Näherungswerthe ergeben sich aus den allgemeinen Werthen der Kettenbrüche der vorstehenden Art, z. B. für \(p = \frac{1}{2} m - 1 \):

\[
\begin{align*}
4 \frac{1}{2} m - 1 - \left(\frac{m - 2}{1} \right) 4 \frac{1}{2} m - 2 + \left(\frac{m - 3}{2} \right) 4 \frac{1}{2} m - 3 - \cdots & \pm \left(\frac{\xi_{1, \frac{1}{2} m - 1}}{\xi_{1, \frac{1}{2} m - 1}} \right) \cdot 4^0 = \\
2 m - 2 - \left(\frac{m - 2}{1} \right) 2 m - 4 + \left(\frac{m - 3}{2} \right) 2 m - 6 - \cdots & \pm \left(\frac{\xi_{1, \frac{1}{2} m - 1}}{\xi_{1, \frac{1}{2} m - 1}} \right) \cdot 2^0 = \frac{1}{2} m;
\end{align*}
\]

und

\[
\begin{align*}
4 \frac{1}{2} m - 1 - \left(\frac{m - 3}{1} \right) 4 \frac{1}{2} m - 2 + \left(\frac{m - 4}{2} \right) 4 \frac{1}{2} m - 3 - \cdots & \pm \left(\frac{\xi_{1, \frac{1}{2} m - 1}}{\xi_{1, \frac{1}{2} m - 1}} \right) \cdot 4^0 = \\
2 m - 2 - \left(\frac{m - 3}{1} \right) 2 m - 4 + \left(\frac{m - 4}{2} \right) 2 m - 6 - \cdots & \pm \left(\frac{\xi_{1, \frac{1}{2} m - 1}}{\xi_{1, \frac{1}{2} m - 1}} \right) \cdot 2^0 = m - 1.
\end{align*}
\]

Zur Entwicklung setze man

\[
2^n = (\delta) + (\mu) + \cdots + (\epsilon).
\]

Es ist nun weiter

a) für eine gerade Anzahl \(m \): \(\xi_{1, \frac{1}{2} m - 1} = \infty \),

b) für eine ungerade Anzahl: \(\xi_{1, \frac{1}{2} (m - 1)} = 0 \).

Setzen wir diese Werthe in die beiden Ausdrücke für die ganzen Werthe der Kettenbrüche ein, so ergibt sich daraus für jede beliebige Anzahl von inneren Reflexionen

\[
\frac{\sin e_2 \cos e_1}{\sin (e_2 - e_1)} = \frac{m + 1}{m},
\]

und hieraus nach einigen Umformungen die bekannten Relationen für den Einfalls­winkel \(e_2 \) und den Brechungswinkel \(e_1 \):

\[
\cos e_2 = \sqrt{\frac{n^2 - 1}{m^2 + 2m}}, \quad \cos e_1 = \frac{m + 1}{n} \sqrt{\frac{n^2 - 1}{m^2 + 2m}}.
\]
Astigmatische Brechung im Regenbogen.

Da die Gesamtabweichung der ein- und austretenden Parallelstrahlen den Werth

\[D = 2 (e_2 - e_1) + m (\pi - 2 e_1) \]

hat, so lassen sich aus diesen Gleichungen die Örter sämtlicher Regenbogen berechnen. Was ferner die Abstände der einzelnen Sonnenbildchen von den Ecken des Polygons für die betrachteten Strahlenfächer der ersten Art anbetrifft, so liegen sie, wie bereits angedeutet wurde, sämtlich symmtrisch zur Mediane. Die aufeinander folgenden Werthe sind:

\[
\begin{align*}
x_0 & = \infty, \\
x_1 & = \frac{m + 1}{m} r \cos e_1, \\
\xi_{0,0} & = \frac{m - 1}{m} r \cos e_1, \\
\xi_{1,0} & = \frac{m - 1}{m - 2} r \cos e_1, \\
\xi_{0,1} & = \frac{m - 3}{m - 2} r \cos e_1, \\
\end{align*}
\]

ist z. B. \(m = 3 \), so ist für die mittelste Ecke \(\xi_{0,1} = 0 \), \(\xi_{1,1} = 0 \), also das Sonnenbildchen eine Symptose. Ist \(m = 4 \), so ist für die mittelste Polygonseite \(\xi_{1,1} = \infty \) und \(\xi_{0,2} = \infty \); das Sonnenbildchen liegt im Unendlichen. Ist \(m = \infty \), so wird \(e_2 = 90^\circ \), \(\sin e_1 = \frac{1}{n} \). Dabei sind alle Bildabsissen gleich \(r \cos e_1 \), d. h. die Sonnenbildchen liegen sämtlich auf den Mitten der Sehnen. Daraus folgt für den symmetrischen Durchgang, dass wenn man bei einer geraden Anzahl von inneren Reflexionen das mittelste Sonnenbildchen auf der Mitte der mittelsten Sehne, also \(\xi = r \cos e_1 \) annimmt, dies den Einfallswinkel \(e_2 = 90^\circ \) erfordert und zwar bei beliebig vielen Reflexionen.

Wir stellen in der folgenden Tabelle die conjugirten Bildabsissen zusammen.

<table>
<thead>
<tr>
<th>(m)</th>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(\xi_{0,0})</th>
<th>(\xi_{1,0})</th>
<th>(\xi_{0,1})</th>
<th>(\xi_{1,1})</th>
<th>(\xi_{0,2})</th>
<th>(\xi_{1,2})</th>
<th>(\xi_{0,3})</th>
<th>(\xi_{1,3})</th>
<th>(\xi_{0,4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\infty)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(\infty)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\frac{3}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{3}{2})</td>
<td>(\infty)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(\frac{4}{3})</td>
<td>(\frac{2}{3})</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(\frac{2}{3})</td>
<td>(\frac{4}{3})</td>
<td>(\infty)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(\frac{5}{4})</td>
<td>(\frac{3}{4})</td>
<td>(\frac{1}{2})</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{3}{4})</td>
<td>(\frac{3}{4})</td>
<td>(\frac{5}{4})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(\frac{6}{5})</td>
<td>(\frac{4}{5})</td>
<td>(\frac{2}{5})</td>
<td>(\frac{1}{2})</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(\frac{2}{5})</td>
<td>(\frac{4}{5})</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(\frac{7}{6})</td>
<td>(\frac{5}{6})</td>
<td>(\frac{3}{6})</td>
<td>(\frac{3}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{3}{4})</td>
<td>(\frac{1}{2})</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{3}{2})</td>
</tr>
</tbody>
</table>
L. Matthiessen.

Bezüglich der Abscissen zu m = 1 u. 2 vergleiche man Engel und Schellbach, Taf. XIV Fig. 1 u. 2; bezüglich m = 1 bis 4 die beigefügten Figuren 1 bis 4.

Aus der Reusch'schen Gleichung für Strahleneoordinaten

\[
\frac{-r \sin e_2 \cos e_2}{\sin (e_2 - e_1)} \cdot \frac{1}{x_0} + \frac{r \sin e_2 \cos e_1}{\sin (e_2 - e_1)} \cdot \frac{1}{x_1} = 1
\]

lässt sich nun in Berücksichtigung der Örter der Sonnenbildchen mit Leichtigkeit für den Hauptregenbogen der erforderliche Werth des Einfallswinkels \(e_2\) darstellen. Es ist

\[
x_0 = \infty, \quad x_1 = \frac{r \sin e_2 \cos e_1}{\sin (e_2 - e_1)} = 2r \cos e_1,
\]

oder

\[
\sin e_2 \cos e_1 = 2 \sin (e_2 - e_1).
\]

Nach einigen Umformungen ergibt sich daraus für alle Farben

\[
\cos e_2 = \sqrt{\frac{n^2 - 1}{3}}.
\]

Für den Nebenregenbogen ist

\[
x_0 = \infty, \quad x_1 = \frac{r \sin e_2 \cos e_1}{\sin (e_2 - e_1)} = \frac{2r \cos e_1}{\sin (e_2 - e_1)}
\]

woraus sich ergibt

\[
\cos e_2 = \sqrt{\frac{n^2 - 1}{8}}.
\]

Wenn wir nur die Strahlen der Mitte der Sonnenscheibe berücksichtigen, und nach Newton\(^1\) die Brechungsindices von Wasser für rothe und violette Strahlen beziehungsweise \(n_r = \frac{108}{81}\), \(n_v = \frac{109}{81}\) annehmen, so ergeben sich aus den allgemeinen Formeln für \(\cos e_2\), \(\cos e_1\) und D folgende Elemente der acht ersten Regenbogen. (vergl. Fig. 5.)

\(^1\) Man vergl. auch Heath, A Treatise on geometrical Optics § 320—322. (1887.) Daselbst ist zu verbessern: für \(m = 1\), \(D_r = 139^h 45^m 30^s\), für \(m = 4\), \(D_r = 300^0 + 43^h 52^m\), für \(m = 5\), \(D_r = 360^0 + 123^h 0^m 27^s\), \(R_r = 51^h 33^m\).
Astigmatische Brechung im Regenbogen.

a) für die rothen Strahlen:

<table>
<thead>
<tr>
<th>m</th>
<th>e_{2r}</th>
<th>e_{1r}</th>
<th>D_r</th>
<th>R_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59°23'30"</td>
<td>40°12'10"</td>
<td>137°58'20"</td>
<td>42°1'40"</td>
</tr>
<tr>
<td>2</td>
<td>71°50'0"</td>
<td>45°26'50"</td>
<td>230°58'50"</td>
<td>50°58'50"</td>
</tr>
<tr>
<td>3</td>
<td>76°50'20"</td>
<td>46°54'35"</td>
<td>318°24'0"</td>
<td>41°36'0"</td>
</tr>
<tr>
<td>4</td>
<td>79°37'45"</td>
<td>47°32'20"</td>
<td>403°52'10"</td>
<td>43°52'10"</td>
</tr>
<tr>
<td>5</td>
<td>81°25'40"</td>
<td>47°52'0"</td>
<td>488°27'0"</td>
<td>51°33'0"</td>
</tr>
<tr>
<td>6</td>
<td>82°41'10"</td>
<td>48°4'10"</td>
<td>572°24'0"</td>
<td>32°24'0"</td>
</tr>
<tr>
<td>7</td>
<td>83°37'20"</td>
<td>48°11'30"</td>
<td>656°10'40"</td>
<td>63°49'20"</td>
</tr>
<tr>
<td>8</td>
<td>84°20'30"</td>
<td>48°16'25"</td>
<td>739°45'30"</td>
<td>19°45'30"</td>
</tr>
<tr>
<td>∞</td>
<td>90°0'0"</td>
<td>48°35'30"</td>
<td>∞</td>
<td>-</td>
</tr>
</tbody>
</table>

Mittel: 43°15'0"

b) für die violetten Strahlen:

<table>
<thead>
<tr>
<th>m</th>
<th>e_{2v}</th>
<th>e_{1v}</th>
<th>D_v</th>
<th>R_v</th>
<th>Breite $D_v - D_r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58°40'30"</td>
<td>39°19'25"</td>
<td>139°43'20"</td>
<td>40°16'40"</td>
<td>1°45'0"</td>
</tr>
<tr>
<td>2</td>
<td>71°26'0"</td>
<td>44°47'10"</td>
<td>234°9'20"</td>
<td>54°9'20"</td>
<td>3°10'30"</td>
</tr>
<tr>
<td>3</td>
<td>76°33'15"</td>
<td>46°17'0"</td>
<td>322°50'30"</td>
<td>37°9'30"</td>
<td>4°26'30"</td>
</tr>
<tr>
<td>4</td>
<td>79°24'30"</td>
<td>46°55'30"</td>
<td>409°34'0"</td>
<td>49°34'0"</td>
<td>5°41'50"</td>
</tr>
<tr>
<td>5</td>
<td>81°15'0"</td>
<td>47°16'0"</td>
<td>495°18'0"</td>
<td>44°42'0"</td>
<td>6°51'0"</td>
</tr>
<tr>
<td>6</td>
<td>82°31'20"</td>
<td>47°27'40"</td>
<td>580°35'20"</td>
<td>40°35'20"</td>
<td>8°11'20"</td>
</tr>
<tr>
<td>7</td>
<td>83°29'10"</td>
<td>47°35'20"</td>
<td>665°33'0"</td>
<td>54°27'0"</td>
<td>9°22'20"</td>
</tr>
<tr>
<td>8</td>
<td>84°13'20"</td>
<td>47°40'10"</td>
<td>750°23'40"</td>
<td>30°23'40"</td>
<td>10°38'10"</td>
</tr>
<tr>
<td>∞</td>
<td>90°0'0"</td>
<td>48°0'0"</td>
<td>∞</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Mittel: 43°54'40"

Die Regenbogen 1, 2, 5, 6 liegen demnach abwärts von der Sonne, die Bogen 3, 4, 7, 8 auf der Sonnenseite. Mit zunehmendem m nimmt die Helligkeit der Farben in steigendem Verhältnisse schnell ab und zwar sowohl wegen des Lichtverlustes bei den einzelnen Reflexionen als auch wegen der wachsenden Breite oder zunehmenden Farbendispersion. Da die acht ersten Regenbogen je vier ziemlich nahe bei einander liegen bei einem mittleren Radius von 43°30', ausserdem die Sonne einen Durchmesser von 32' hat, so erblicken wir eine Reihe von ineinander verschmelzenden Regenbogen. (Fig. 5.)

Da ferner wegen der schiefen Incidenz der Sonnenstrahlen in die Tropfen die Brechung und Spiegelung eine astigmatische ist, so haben die unendlich dünnen

§ 2. Für die Brechung von Strahlenfächen im Nebennormalschnitte (Sagittal) gilt die zweite Gleichung von Reusch

\[-\frac{r \sin e_1}{\sin (e_2 - e_1)} \cdot \frac{1}{x_0} + \frac{r \sin e_2}{\sin (e_2 - e_1)} \cdot \frac{1}{x_2} = 1;\]

für die inneren Reflexionen

\[-\frac{r}{2 \cos e_1} \cdot \frac{1}{\xi_{0,0}} + \frac{r}{2 \cos e_1} \cdot \frac{1}{\xi_{0,1}} = 1,\]

\[-\frac{r}{2 \cos e_1} \cdot \frac{1}{\xi_{0,1}} + \frac{r}{2 \cos e_1} \cdot \frac{1}{\xi_{1,1}} = 1, \text{ u. s. f.}\]

Die Sonnenbildchen (zweiten Brennlinien) \(B_2, B_2', B_2'', \ldots\) liegen zwar auch auf den Sehnen, aber zugleich auf dem Axen- oder Centralstrahle der Tropfen. (Fig. 1 bis 4.) Ihre Örter werden deshalb leicht durch Construction gefunden, da sie in den Durchschnittspunkten der Sehnen mit dem Centralstrahle gelegen sind. Dieselben sind jedoch unsymmetrisch vertheilt, wie auch die Brennstrecken verschieden gross. Ausserdem sind die austretenden Strahlenfächer nicht vollkommen parallel, wie bei der ersten Art; da aber das letzte Bildchen auf den austretenden Strahlen immer in der Nähe des Tropfens liegt und dieser verhältnismässig weit vom Auge entfernt ist, so ist die Bedingung des parallelen Austretens auch für die zweite Art der Strahlenfächer sehr nahe erfüllt.

Kennt man nun die Winkel \(e_2\) und \(e_1\) für die Strahlenfächer erster Art, so lassen sich die Örter der Bildchen \(B_2, B_2', B_2'', \ldots\) mit Hilfe der vorstehenden Formeln auch berechnen. Im übrigen bilden sie die Glieder eines ähnlichen dioptrisch-katoptrischen Kettenbruches, beziehungsweise die Unterdeterminanten einer Kettenbruch-Determinante. Es ist nämlich

\[x_0 = \infty,\]

\[x_2 = \frac{r \sin e_2}{\sin (e_2 - e_1)} = \frac{a}{\cos e_1^2}, \quad \frac{r}{2 \cos e_1} = \frac{b}{\cos e_1^2} = \beta,\]

und wenn man ebenso wie früher die Abscissen auf den Strahlen abmisst,

\[x_2 + \xi_{0,0} = \xi_{1,0} + \xi_{0,1} = \xi_{1,1} + \xi_{0,2} = \ldots = 2 r \cos e_1 = 4 \beta \cos e_1^2.\]
Astigmatische Brechung im Regenbogen.

Hieraus ergeben sich folgende Gleichungen:

\[\bar{\xi}_{0,0} = 4 \beta \cos \varepsilon_1^2 - \frac{a}{\cos \varepsilon_1^2}, \quad \bar{\xi}_{1,0} = \frac{\beta}{1 - \beta} \]
(erneste Reflexion),

\[\bar{\xi}_{0,1} = 4 \beta \cos \varepsilon_1^2 - \bar{\xi}_{1,0}, \quad \bar{\xi}_{1,1} = \frac{\beta}{1 - \beta} \]
(zweite Reflexion)

u. s. f.

Der Kettenbruch für die Bildabscisse nach \(p \) Reflexionen ist demzufolge

\[\frac{\bar{\xi}_{1, p-1}}{\beta} = \frac{1}{1 - \frac{1}{4 \cos \varepsilon_1^2 - 1}} \cdot \frac{1}{4 \cos \varepsilon_1^2 - \frac{a}{b}}, \]

oder in Determinanten-Form

\[
\begin{vmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 \cos \varepsilon_1^2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 4 \cos \varepsilon_1^2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
. & . & . & . & . & . & . & . \\
. & . & . & 0 & 1 & 4 \cos \varepsilon_1^2 & a & . \\
0 & 0 & 0 & 0 & 1 & b & . & . \\
\end{vmatrix}
\]

Für \(p \) Reflexionen lässt sich daraus der Werth der Bildabscisse \(\xi_{1, p-1} \) finden; er ist nicht so einfach wie der der ersten Art der Bildchen. Die ersten Näherungswerthe des Kettenbruches sind folgende:

\[
\begin{vmatrix}
0 & 1 & 4 \cos \varepsilon_1^2 & 4 \cos \varepsilon_1^2 - 1 & (4 \cos \varepsilon_1^2)^2 - 2 (4 \cos \varepsilon_1^2) & \frac{(4 \cos \varepsilon_1^2)^2 - 3 (4 \cos \varepsilon_1^2) + 1}{1}, \quad \text{u. s. f.}
\end{vmatrix}
\]

Die allgemeine Form dieser Näherungswerthe lässt sich durch algebraische Reihen darstellen, deren Coefficienten figurirte Zahlen von aufsteigender Ordnung sind und an deren Stelle Binomialcoefficienten gesetzt werden können.
Der vorletzte und letzte Nw. nach der ptten Refexion haben, 4 cos $e_i = Q$ gesetzt, die Werthe:

$$ L = \frac{Q^{p-1} - (2p^3) Q^{p-2} + (2p^4) Q^{p-3} - (2p^5) Q^{p-4} + \ldots}{L_1} $$

$$ M = \frac{Q^{p-1} - (2p^3) Q^{p-2} + (2p^4) Q^{p-3} - (2p^5) Q^{p-4} + \ldots}{M_1} $$

Mit Hilfe des letzten Partialzählers b und Partialnenners a erhält man daraus den Werth des ganzen Kettenbruchs

$$ \frac{N}{N_1} = a M - b L, $$

Da das Sehnenpolygon von der Centrale für m gerade nur in $\frac{1}{2}$ m Punkten, für m ungerade in $\frac{1}{2} (m + 1)$ Punkten geschnitten wird, so sind von den Bildern der zweiten Art nur die Hälfte reell, die übrigen imaginär, dagegen die Bilder der ersten Art sämtlich reell. Die Blickrichtungen der Regenbogen sind für beide Strahlenarten die gleichen, da die beiden Brennlinien auf demselben Strahle liegen, und weil sie die gleichen Helligkeiten besitzen, bewirken die in den früheren Theorien in Betracht gezogenen Strahlenfächer nur die halbe Helligkeit der Regenbogen. Die Brennstrecken sind verschieden gross und sind bestimmt durch die Differenzen $B_1 - B_2$, $B_1' - B_2'$, u. s. w., welche für die austretenden Strahlen den Werth ∞, für m gerade auf der mittelsten Sehne den Werth ∞, für m ungerade stets endliche Werthe annehmen. Durch die Mitberücksichtigung der Strahlenfächer zweiter Art erhält also die alte Theorie der Regenbogen eine nothwendige und wichtige Ergänzung.

§ 3. Vom Minimum der Ablenkung der austretenden Strahlen zweiter Art.

Wir haben im vorangehenden Paragraphen vorausgesetzt, dass die Strahlenfächer zweiter Art denselben Strahlenweg wie diejenigen erster Art verfolgen und gefunden, dass ihre conjugirten austretenden Strahlen nicht vollkommen parallel werden, diese also nicht mit der Asymptote ihrer kausischen Kurve coincidiren. Man kann deshalb weiter untersuchen, ob nicht bei einer anderen Incidenz die austretenden Strahlen parallel werden können, womdurch von diesen Strahlenarten neue Regenbogen gebildet werden müssten. In diesem Falle muss der Durchgang ebenfalls ein symmetrischer sein. Da aber die Symmetrale durch den Centralstrahl des Tropfens gebildet wird, so müssen die austretenden Parallelstrahlen mit den einfallenden Strahlen der zweiten Art parallel sein und sämtliche Sonnenbildchen (zweite Brennlinien) auf der Symmetrale liegen. Aus der Gleichung für die Gesamtabweichung der ein- und austretenden Parallelstrahlen

$$ D = 2 (e_z - e_i) + m (x - 2 e_i) = 0 $$

folgt nunmehr

$$ e_z = (m + 1) e_i. $$
Aus dem Brechungsgesetz

\[\frac{\sin e_2}{\sin e_1} = \frac{\sin [(m+1)e_1]}{\sin e_1} = n \]

und in Berücksichtigung des Umstandes, dass \(e_2 \) den Werth 90° nicht überschreiten darf, ergeben sich dann folgende Minimalwerthe von \(n \):

\[\begin{align*}
e_2 &= 2e_1, \quad e_1 = 45^\circ, \quad \text{min } n = 1: \sin 45^\circ = \sqrt{2}, \\
e_2 &= 3e_1, \quad e_1 = 30^\circ, \quad \text{min } n = 1: \sin 30^\circ = 2, \\
e_2 &= 4e_1, \quad e_1 = 22\frac{1}{2}^\circ, \quad \text{min } n = 1: \sin 22\frac{1}{2}^\circ = 2,613, \quad \text{u. s. f.}
\end{align*} \]

Die Beziehungen zwischen den Winkeln und \(n \) sind demnach folgende:

\[\begin{align*}
\frac{\sin 2e_1}{\sin e_1} &= 2 \cos e_1 = n, \\
\frac{\sin 3e_1}{\sin e_1} &= 4 \cos e_1^2 - 1 = n, \\
\frac{\sin 4e_1}{\sin e_1} &= 4 \cos e_1 (2 \cos e_1^2 - 1) = n.
\end{align*} \]

Die letzte Formel erfordert zur Bestimmung von \(e_1 \) und \(e_2 \) schon die Auflösung einer kubischen Gleichung. Die Realisirung der Lichtbogen erfordern nach dem Vorhergehenden eine ungewöhnliche Grösse des Brechungsvermögens der Kugeln; der Lichtbogen nach einmaliger Reflexion kann schon nicht mehr durch Wassertropfen entstehen, wohl aber durch Crownglas \((n = 1,530) \); der zweite etwa durch Korund \((n = 2,089) \); der dritte etwa durch Diamant \((n = 2,514 \text{ nach Schrauf für Fraunhofer H}) \); derselbe Index muss aber schon den Werth 2,613 übertreffen.

Die vorstehenden drei Fälle sind in den Figuren 6–8 zur Darstellung gebracht; die numerischen Berechnungen ergeben folgende Resultate:

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>(e_2)</th>
<th>(e_1)</th>
<th>(D)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,530</td>
<td>(80^\circ 11' 20'')</td>
<td>(40^\circ 5' 40'')</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2,089</td>
<td>(85^\circ 30' 0'')</td>
<td>(28^\circ 30' 0'')</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2,722</td>
<td>(86^\circ 0' 0'')</td>
<td>(21^\circ 30' 0'')</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Hieraus geht hervor, dass in allen Fällen dieser Art kein Farbenbogen entsteht, sondern dass nur ein weisser farbloser Fleck im Centrum der gewöhnlichen Bogen zu Stande kommt und zwar bei einer ungeraden Anzahl von inneren Reflexionen der Sonne gegenüber, bei einer geraden Anzahl vor der Sonne selbst. Im Minimum der Ablenkung verlaufen also die austretenden Strahlen parallel mit den einfallenden. Bei dem gleichen Durchgange mit den Strahlen erster Art indessen treten sie zwar nicht vollkommen parallel aus, aber sie verdoppeln die Wirksamkeit derselben, wie oben gezeigt worden ist.
§ 4. Über secundäre Regenbogen, welche durch Spiegelung der Sonne im Meeresspiegel entstehen.

Es erscheint dann der Hauptregenbogen zum zweiten Male derart, dass er von dem niedrigsten Punkte des gewöhnlichen Hauptregenbogens aufwärtssteigend den Nebenregenbogen durchschneidet. Diese seltsame Erscheinung ist in Fig. 9 zur Anschauung gebracht.
Fig. 3.

Fig. 4.
Fig. 9.

Ann. di mat.: Sopra alcune proprietà degli integrali Eulieriani di prima e seconda specie. 7 p. (2) v. 2, 1869. — De aequilibrii figuris et revolutione homogeneorum annulorum sidereorum sine corpore centrali atque de mutatione eorum per expansionem aut condensationem, 28 p. (2) v. 3, 1870.

Compt. rend.: Le problème des restes dans les ouvrages chinois Suan-king de Sun-tze et le Tayen-lich-su de Yih-hing, 3 p. (v. 92, 1881). — Sur l'équilibre d'une masse fluide en rotation (Une réclamation de priorité contre Mss. Tait et Thomson); (v. CII, 1886). Siehe auch Acta mathem. Table de matières des tomes 1—10; pg. 375. Stockholm (1887) und Tisserand, Traité de mécanique céleste; Tome II pg. 169 (1891).

Giornale di matem.: Quelques théorèmes sur le quadrilatère, 2 p. Une résolution nouvelle de l'équation du quadratique degré, 1 p. (v. 5, 1867).

Kieler Univ.-Chron.: Neue Untersuchungen über frei rotirende Flüssigkeiten im Zustande des Gleichgewichts (Ehwalungsschrift zur Feier des Geburtstages König Friedrich VII.), 74 p. 4°, Kiell 1859. — Ueber die jährliche Drehung der mittleren monatlichen Windrichtung im nördlichen Deutschland. (1866.)
Klin. Monatsbl. f. Augenheilk.: Ueber die Brechungsindices kataraktöser Linsen-
substanzen, zusammen mit Prof. v. Zehender, 17 p. (1877). — Die zwanzig Cardinalepunkte
des menschlichen Auges, 4 p. (1882). — Ueber die Form unendlich dünner astigmatischer

Münchener Berichte: Ueber die Form der unendlich dünnen astigmatischen
Strahlenbündel und die Kummer'schen Modelle, 17 p. (1883).

atmosphärischen Refraction und Totalreflexion der Schallwellen und ihre Bedeutung für
die Nautik. (74. Bd. Nr. 4. 1899.)

Pflüger, Arch. f. Physiol.: Die Differenzialgleichungen der Dioptrik der geschichteten
Krystallinse, 83 p. (v. 19, 1879). — Untersuchungen über den Aplanatismus und die
Periscope der Krystallinsein in den Augen der Fische, 21 u. 19 p. (v. 21 u. 25, 1880—81).
— Ueber die Beziehungen, welche zwischen dem Brechungsindex des Kerncentrums der
den schiefen Durchgang unendlich dünner Strahlenbündel durch die Krystallinse des
leo fem., 8 p. (v. 35, 1884). — Ueber Begriff und Auswerthung des sogenannten
Totalindex der Krystallinse, 29 p. (v. 36, 1885). — Ueber den physikalisch-optischen
— Ueber die Thomas'schen Bipolar-Curven auf angeschliffenen Krystallinser, 9 p. (v. 42,
1888). — Ueber den physikalisch-optischen Bau des Auges der norwegischen Bartem-
doder Einwale, 14 p. (v. 49, 1891). — Ueber aplanatische Brechung und Spiegelung in
Oberflächen zweiter Ordn. und die Hornhautrefraction (v. 91, 1902).

tropfbarer und elastischer Flüssigkeiten, 18 p. (v. 141, 1870).

zweier mikroskopischer Kreiswellensysteme auf der Oberflächenhaut von Flüssigkeiten,
16 p. (N. F. v. 32, 1887). — Experimentelle Untersuchungen über das Thomson'sche
Gesetz der Wellenbewegung auf Flüssigkeiten unter der Wirkung der Schwere und
Cohesion (v. 33, 1889). — Beiträge zur Theorie der geschwefelten Strahlenbüschel und
ihrer Wellenflächen (N. F. v. 5, 1901). — Das astigmatische Bild des horizontalen ebenen
Grundes eines Wasserbassins. (ibid.) — Von der astigmatischen Strahlenbrechung in
einer Vollkugel bei schiefer Incidenz und von den adjungirten Fixpunkten (1 v. F.
v. 7, 1902).

und Uebertragung auf räumliche Verhältnisse, 3 p. (v. 5, 1890). — Anwendung der
oscillirenden Kettenbrüche zur gleichzeitigen Bestimmung zweier Wurzeln einer
Gleichung, 5 p. (v. 6, 1891). — Ueber die Abweichung des freien Falles der Körper von
der Verticales, 10 p. (v. 7, 1892). — Neue Auflösung der quadratischen, kubischen und
biquadratischen Gleichungen, 10 p. — Scheinbare Einschränkungen des Euler'schen
Satzes von den Polyedern, 2 p. — Ueber Gestalt und Maass der singulären Punkte der

Husmer's Wochenblatt: Zur Statistik der Bevölkerung der Erde (1896 Nr. 95).

